
ii_iiii:_Ii!__i
_:_'i _T!_

i!!_II_i____i

ii:_iI(! _:,

! L¸

i :i_!:i¸ •

i_! _ ,

OPERATIONS AUTOMATION

Charles Thomas Boreham

OAO Corporation
787 West Woodbury Road

Altadena, CA 91001

N95- 17236

[._

ABSTRACT

This is truly the era of "Faster-Better-
Cheaper" at the National Aeronautics and

Space Administration/Jet Propulsion

Laboratory (NASA/JPL). To continue
JPL's primary mission of building and

operating interplanetary spacecraft, all pos-

sible avenues are being explored in the
search for better value for each dollar spent.

A significant cost factor in any mission is

the amount of manpower required to
receive, decode, decommutate, and distri-

bute spacecraft engineering and experiment

data. The replacement of the many
mission-unique data systems with the single

Advanced Multimission Operations System

(AMMOS) has already allowed for some

manpower reduction. Now, we find that

further economies are made possible by

drastically reducing the number of human

interventions required to perform the setup,

data sating, station handover, processed

data loading, and tear down activities that

are associated with each spacecraft tracking

pass.

We have recently adapted three public

domain tools to the AMMOS system which
allow common elements to be scheduled

and initialized without the normal human

intervention. This is accomplished with a

stored weekly event schedule. The manual

entries and specialized scripts which had to

be provided just prior to and during a pass

are now triggered by the schedule to per-
form the functions unique to the upcoming

pass.

This combination of public domain
software and the AMMOS system has been

run in parallel with the flight operation in

an online testing phase for six months.

With this methodology, a savings of 11

man-years per year is projected with no

increase in data loss or project risk. There

are even greater savings to be gained as we

learn other uses for this configuration.

INTRODUCTION

The purpose of this paper is to explain

what has been done to automate the opera-

tion of the Multimission Ground Data Sys-
tem (MGDS) at JPL. It is the further intent

of this paper to explain some of the prob-
lems encountered during the systems' evo-

lution that prevented this automation from

occurring earlier.

OBJECTIVES

The implementation of JPL's automation of

MGDS operations addressed seven objec-
tives:

[1] Automate the operation of telemetry

processing for realtime operations thus

eliminating all of the repeated tasks

that the system controller would nor-

mally perform manually during a sup-

port period.

[2] Accomplish the automation in a simple
yet reliable fashion.

[3] Maintain the ability for system con-
troller intervention.

[4] Provide automatic backup to MGDS

systems in case of hardware or operat-
ing system failure.

[5] Use a method independent of applica-

tions software and hardware platforms.

[6] Eliminate labor-intensive operational
work-arounds associated with unstable

or incomplete applications software
deliveries.

501



ili• /

[7] Give the system the flexibility to easily
accommodate additional functions

and/or projects.

PROBLEMS

Providers of realtime support are always

interested in minimizing costs and maxim-

izing reliability through the automation of

operator tools. A series of obstacles have

persisted, however, that have held back the

automation process.

[1] The cost of operations is higher than

necessary because systems are fre-

quently delivered strictly to meet

budget and schedule constraints. Such

a delivery is made with the absolute

minimum capabilities that will meet

project processing requirements, and
no emphasis is placed on operability

issues. Yet, the prime focus of opera-
tions groups is not that deliveries meet

specific requirements. Rather, it is that
deliveries produce the data products

required by projects without extensive
human intervention. So when

deliveries are rushed in order to meet

budget and schedule constraints, they

lack operability and the operational
costs are increased.

Further, the automation of a system is

not an achievable goal if the hardware
and software are not stable. Thus, the

significant reduction in costs available

from the automation of operations also
hinges upon the operability of

delivered systems.

[2] For a variety of reasons, there is strong

pressure to adopt a Graphical User

Interface (GUI) strategy for all levels
of applications. This type of interface
is beneficial for occasional users of the

system, but not for operations person-
nel who maintain and run the system
around the clock and who understand

the system's full capabilities. Opera-
tions personnel need to be able to act

quickly at all levels of each application

and its operating system. From an

operational perspective, a punch and

click type of interface is intrusive, lim-

iting, and cumbersome, and is thus an
obstacle to any type of automation that

would lower operational costs.

[3] The concept of running a system from

a Sequence of Events (SOE) file with
little or no human intervention is not a

new one. But the implementation of

this concept, too, has had itsassociated

problems. One of these is the high

frequency of changes that are applied

to any given weekly SOE. Histori-

cally, these changes have had to be
applied manually, forcing frequent

operator intervention.

Thus, the question to be answered became:
Could the operation of the MGDS system

be automated to the degree that we desired

using available software and with the sys-

tem design that was already online? With

a little creativity and a thorough under-

standing of the operational functions, this
goal turned out to be achievable.

The UNIX utilities that are being applied in

JPL's automation are straight forward and

available to all users. The third party
software programs are available on the net-

work and once again can be accessed and

used by anyone. Not only did we accom-

plish the objectives set out earlier; the

implementation of these automated opera-

tions features resulted in an operational

staffing reduction from 28 to 17 for the

same data delivery workload. On an annual

basis this saves JPL approximately 1.2 mil-

lion dollars in operational costs.

THE ROLE OF UNIX

When considering the automation of real-

time operations, we frequently tend to see

large complicated software programs that

cost as much as the current operators who

run the systems. With the operating sys-

tems that were previously in use, this
assessment would have been accurate. But

with the adoption of UNIX as the operating
system and with the tools and utilities that
then become available, the Cost of automa-

tion is within the reach of all groups.

502



11!77
<i!ii_i!i!!ii_:<

i_iiiiii_ilI
:'<!!HI,

%

:i! •

i f

_i _

L

JPL commenced its transition to the UNIX

Operating System in 1986. The first ver-

sion of the flight applications that ran in the

Ur,rix environment was V7, which supported

the Magellan mission, but required exten-
sive operational work-arounds. V7 had to

be monitored continuously by the realtime

operations group to ensure the delivery of

usable data to the project. As previously

described, the stability of the realtime appli-

cations software is a key factor in success-
fully automating operational tasks. In our

case, this needed stability was achieved in

December, 1993, with the delivery of the
nineteenth major version of the application

software. This delivery allowed our opera-

tions staff to take advantage of the tools,

utilities, and public domain software pack-
ages that are available for UNIx.

Using off-the-shelf and public domain
software with a small amount of custom

coding, we were not only able to achieve a

high degree of autonomous operation but

also to build an inexpensive, software-

switched, fault-tolerant system. We never

lose data due to a host system failure. This

general approach can be applied to a broad

variety of high reliability applications at a

fraction of the cost of the special purpose

fault-tolerant computing systems on the
commercial market. Moreover, this solu-

tion is vendor platform independent, requir-

ing only a UNIx operating system environ-
ment.

THE ROAD TO AUTOMATION

The reliability of delivered applications

paved the way for automated control. The

operations task for flight projects is repeti-

tive and can therefore be •scripted to run on

a schedule. This was done on our systems
by combining a seven day SOE, custom

software to convert the schedule to applica-
tions directives, public domain software,
and UNIx utilities.

The integration of COTS and public
domain software into realtime mission-

critical systems is a viable and cost-

effective alternative to custom designed and

developed code. The automated operational

capability described in this paper was con-
ceived and integrated in a two month

period by selected individuals in the opera-
tions group as time permitted. Parallel test-
ing took an additional six months. Under

the automated configuration, more space-

craft data arrived at the projects' databases

than under the manual system!

WHAT IS AUTOMATED?

We maintain at least 32 applications and 10

monitoring processes on 35 remotely

accessed systems. Prior to automating

operations this same configuration was

maintained manually. In the following
paragraphs we describe details of what is

currently automated in our implementation.
In addition, we describe some of the

specific components that we used.

At the heart of the configuration is the
seven-day SOE. From this, all associated

jobs are derived and submitted to the sys-
tem for the full week for all monitored

spacecraft. Such job schedules are disk
based in UNIx and therefore remain

scheduled even when the host system is
brought back from a failure. This means

that all scheduled jobs will still execute

when the system is brought back to online
status. Jobs that did not execute when the

host was down have to be entered manually
but all jobs are scripted and well-ordered,

and can thus be resubmitted to the system
easily.

screen

In the UNIx world, software follows a

standard input/output protocol that

previously created a major problem

for application and system failure

recovery. If a host system failed, the

applications that were being run from

that host by remote login also failed.

This difficulty was resolved by utiliz-

ing screen, a public domain software

program written by Oliver Laumann

of the Technical University of Berlin.

Here, predefined scripts start screen
prior to starting the applications.

Standard input and output are
buffered by screen on the X terminals

503



harboringremote logins, sothat when
the host systemfails, the applications
continue to run. A mechanismfor
reattachingto the application is also
provided by screenso that operations
can be normalized once the host is
back on line. Now, when the host
system goes down, there is no data
loss during the host's down period.
All remote systemscontinue the pro-
cessing and loading of project data
during a host failure.

SystemUtilities
To recover from failures of the host
system we have used a number of
UNIX capabilities: First we have the
failed host automaticallyrebootitself.
Next, we provide that X Windows
accessesa customized initialization
when thehost comesup. The initiali-
zationfile createsall appropriatewin-
dows and remote logins that were
being used prior to the failure. The
host then accessesa script that reat-
taches its windows to the proper
processes(using screen)which have
remained unaffected despite the
failure of the host. Again, down-
stream users of the data will not have

been affected by the failure of the

host system.

monitor

The system is also protected against a
total hardware failure of the host sys-

tem. The operations group has built

a program that runs on the backup

system and monitors the prime host.

If a failure of the prime host occurs,
a five minute timer is set on the mon-

itoring system, and a popup window
notifies the controller immediately

that the prime host has failed. The

controller can respond to the popup

window informing the backup system

to promptly usurp the duties of the

prime host. If, on the other hand, the

popup is not responded to within the
five minutes, the backup system

automatically executes the X Win-
dows initialization file and reattaches

to the appropriate processes using

screen. The backup host thus

assumes all control and processing

for the prime host. Once again, the
downstream user of the data is not

affected.

The problem of applications failures
on the remote systems is handled by

additional monitors. If an application

or its remote system fails, a popup
window notifies the controller so that

the hardware can be substituted or the

software problem can be properly

handled. The popup window is

activated frequently and has a very

annoying beep that cannot be ignored.

expect
We use a public domain package

called expect written by Don Libes of
the National Institute of Standards

and Technology. This utility is set

up to acquire and update a copy of

the seven-day schedule. The output
of expect (the seven-day schedule) is

piped through another piece of cus-

tom software written by the opera-

tions group. That output is a file of
the scripting schedule that is to be

submitted to the system. Scripts are

scheduled using the UNIX utility, at.

With expect, updates are made to the

schedule automatically without the
need for human intervention.

force

The third public domain package

used is force, which was written by

Jeff Glass of the MITRE Corporation.

We use this essential utility to place

the applications-level commands on

their associated windows. The appli-
cations commands and their force

directives reside in the predefined

scripts that are submitted by at to

execute at specific times according to

the seven-day schedule. We have
also modified the xterm program and

updated the UNIX device directory to

incorporate the use of special ttys.

We dedicated these ttys to each of

the X terminals being used so that the

504



i_!i ! i_

ii(il_

:;i i̧

ii_
< ,

same tty names always assign to the

same windows. This was important
because, while the command that

force sends is guaranteed by TCP/IP
to reach its destination, force knows

nothing of the context of that destina-

tion. Scripts can now consistently

force commands to given windows
with confidence that the assumed

context is valid.

CONCLUSION

The automation of the operation of our sys-

tem has been accomplished with some very

simple concepts and tools, using scripts,

minor amounts of C programming, and
public domain software. There was no

significant expense involved, and the out-
come has been the dramatic reduction of 11

man-years per year in the cost of opera-
tions.

505


